Aging of TiO2 Nanoparticles Transiently Increases Their Toxicity to the Pelagic Microcrustacean Daphnia magna
نویسندگان
چکیده
During their aquatic life cycle, nanoparticles are subject to environmentally driven surface modifications (e.g. agglomeration or coating) associated with aging. Although the ecotoxicological potential of nanoparticles might be affected by these processes, only limited information about the potential impact of aging is available. In this context, the present study investigated acute (96 h) and chronic (21 d) implications of systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard test species Daphnia magna by following the respective test guidelines. The nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most environmentally-relevant setup used here, significantly increased acute toxicity (by approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged nTiO2. Comparable patterns were observed during the chronic experiments. A likely explanation for this phenomenon is that the aging of nTiO2 increases the particle size at the start of the experiment or the time of the water exchange from <100 nm to approximately 500 nm, which is the optimal size range to be taken up by filter feeding D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, cannot be retained by the daphnids' filter apparatus ultimately reducing their ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 related toxicity over the aging duration, highlights the knowledge gap regarding the underlying mechanisms and processes. This understanding seems, however, fundamental to predict the risks of nanoparticles in the field.
منابع مشابه
Toxicity Assessment of Some Conventionally Manufactured Nanoparticles to Daphnia Magna
Background and purpose: Nanoparticles (NPs) are used in different industries, including electronics, pharmaceuticals, cosmetics, healthcare, and environmental processes. Therefore, it is necessary to evaluate their toxicity in the aquatic environment. Materials and methods: The acute toxicity of six different kinds of nano-sized particulates (SiO2, Fe2O3, Al2O3, TiO2, ZnO, and MgO) to Daphnia ...
متن کاملAcute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus
Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...
متن کاملEvaluation of silver nanoparticles toxicity in Daphnia magna: Comparison of chemical and green biosynthetic productions
Recently nanoparticles, particularly silver nanoparticles, are broadly used in industry, hence the contamination of the environment with AgNPs has caused considerable concern. In this study, the toxicity of biosynthetic nanosilver produced by two macroalgae: Sargassum boveanum and Ulva flexuosa extracts were compared with chemical nanosilver in Daphnia magna. Size and quality of nanoparticles e...
متن کاملSurfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna.
The objective of the study was the estimation of the effect of surfactants on the toxicity of ZnO, TiO2 and Ni nanoparticles (ENPs) towards Daphnia magna. The effect of hexadecyltrimethylammonium bromide (CTAB), triton X-100 (TX100) and 4-dodecylbenzenesulfonic acid (SDBS) was tested. The Daphtoxkit F test (conforming to OECD Guideline 202 and ISO 6341) was applied for the toxicity testing. Bot...
متن کاملThe influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
The present study investigated changes in suspension stability and ecotoxicity of engineered nanoparticles (ENPs) by addition of Suwannee River natural organic matter and aging of stock and test suspensions prior to testing. Acute toxicity tests of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2 ) ENPs with Daphnia magna were carried out following Organisation for Economic Co-operatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015